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Abstract 

The monoindenyl species [(-q5-C9Hv)ZrC13] n and [('qS-C9HT)HfCI2(/~-C1)]2 have been prepared. The structurally character- 
ized hafnium dimer represents the first structurally characterized Cp (or substituted Cp) hafnium trichloride complex. 
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Monocyclopentadienyl complexes of the early transi- 
tion metals have been studied extensively over the past 
30 years [1]. Specifically, the chemistry of CpMC13 
(M = Ti, Zr, and Hf) complexes and their derivatives is 
of interest because the monocyclopentadienyl com- 
plexes display different reactivity towards an assort- 
ment of reagents than do the related CpzMC12 com- 
plexes [2]. While monocyclopentadienyl complexes of 
titanium(IV) have been investigated well, the chemistry 
of CpZrC13, CpHfC13, and related monocyclopentadi- 
enyl compounds, has been explored less [3]. Prepara- 
tion of CpZrC13 can be accomplished by the pho- 
tochlorination of CpzZrCl 2 [3]; CpHfC13(thO 2 is ob- 
tained by treating HfC14 with MgCp2 in refluxing de- 
calin followed by crystallization from THF [4]. Al- 
though CpZrC13 has been structurally characterized, to 
date there are no reported structures for base-free 
cyclopentadienyl or substituted cyclopentadienyl 
hafnium trichlorides [5]. 

We wish to report the synthesis, characterization, 
and reactivity of the Group 4 indenyl metal trichlorides 
[(C9Hv)ZrC13] n and [(C9H7)HfClz(/x-C1)]2; the crystal 
structure of [(C9Hv)HfClz(/z-CI)]2 has also been deter- 
mined [6]. The only previously known indenyl ( C 9 H  7) 
metal halides are the bis-indenyl dichorides of Group 4 

* Corresponding author. 

0022-328X/95/$09.50 © 1995 Elsevier Science S.A. All rights reserved 
SSDI 0022-328X(94)05161-5  

[7], and the recently reported indenyl complexes (@- 
C9Hy)TiCI 3 [6] and ('r/5-C9Hv)zNbCI2 [8]. To take 
advantage of soluble byproducts, 1-trimethylsilylindene 
and 1-tributylstannylindene were used as indenyl trans- 
fer agents [9]; the use of silicon- and tin-substituted 
cyclopentadienyl reagents for the transfer of a single 
cyclopentadienyl ligand to transition metals is well- 
known [10]. 

The addition of 1-tri-n-butylstannylindene, 1-(Bu 3- 
Sn)C9H7, to a room temperature suspension of ZrCI 4 
in toluene produces (@-C9H7)ZrCI3(1) in 78% yield 
as a bright yellow precipitate; the reaction of ZrC14 
with 1-(Me3Si)C9H 7 gives a mixture of products. After 
being thoroughly washed with pentane, 1 gives satisfac- 
tory analyses for C, H, and C1. (Eq. (1)) [11]. 

ZrC14 + ~ 

H 

t o l u e n e  [ ( . r /5_e9u  7 ) Z r e l  3] (1) 
- CISnBu 3 n 

(1) 
The 1H NMR spectrum of 1 is interpreted as a typical 
@-indenyl pattern in which there is an A,NBB' pattern 
for the six-membered ring protons and an AB 2 pattern 
for the five-membered ring protons [12]. Although an 
@-species would exhibit a similar ~H NMR pattern, 1 
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is most likely to be an r/5-species in solution. We have 
not yet been able to grow X-ray quality crystals of 1 
but, given its low solubility, it is likely polymeric; the 
cyclopentadienyl analogue, CpZrC13, has an extended 
chloride-bridged polymeric structure [5]. 

If HfC14 and one equivalent of 1-trimethylsilylin- 
dene are refluxed overnight in toluene, bright yellow 
crystals of [(r/5-C9H7)HfC12(/z-CI)]2 (2) are isolated in 
80% yield directly from the filtered, hot reaction solu- 
tion (Eq. (2)); satisfactory analyses for C, H, and C1 are 
obtained [13]. 

HfC14 + ~ 

H 
toluene, reflux [ (~5_C9H 7)HfCI2(/z_C1)] 2 (2) 

- CISiMe 3 

(2) 
The ~H NMR spectrum of 2 contains AAgBB' and AB 2 
patterns for the six- and five-membered ring protons, 
respectively, that are similar to those seen for 1 [14]. 

Single crystals of 2 were obtained by cooling satu- 
rated toluene solutions to -20°C [15]. The structural 
analysis shows that crystals of 2 are composed of chlo- 
ride-bridged dimers, [('r/5-f9H7)HfCl2(/~-Cl)]2, in the 
solid state; a perspective view of the molecule is shown 
in Fig. 1. The dimer possesses a crystallographically- 
imposed inversion center and the molecule consists of 
two edge-sharing distorted square pyramids. The two 
bridgehead carbons in 2 (C(5) and C(10); average Hf -C  
distance = 2.526(11) ,~) form longer M-C  bonds than 
do the three allyl-like carbons (C(11), oC(12), and C(13); 
average Hf -C  distance = 2.435(11) A). This bonding 
pattern is consistent with the HOMO of the indenyl 
anion, which has small contributions from the Pz or- 
bitals on the two bridgehead carbons [16], and the 
differences in the metal-carbon bond distances are 
normal for an r/5-indenyl ligand. The average terminal 
Hf-Cl distance of 2.382(4) ,~ is only slightly longer 
than the 2.337(4)-2.354(3) A range of Hf-Cl  distances 
found in (CsMes)HfC12{Si(SiMe3)3} and (CsMes)Hf- 
Cl2{Ge(SiMe3) 3} [17], but is nearly identical to the 
2.391(6) and 2.394(6) ,~ Hf-C1 distances in isopropyl- 
(cyclopentadienyl- 1-fluorenyl)hafnium(IV)dichloride 
[18]. The bridging Hf-C1 distances of 2.539(11) and 
2,513(11) A represent symmetric chloride bridges, but 
are longer, as expected, than the terminal chloride 
distances. In addition to being the first monoindenyl- 
hafnium species, this dimer represents the first struc- 
turally characterized base-free half-sandwich hafnium 
trichloride complex. The only reported structure of a 
cyclopentadienyl-hafnium trichloride complex is that of 
CpHfCla(DME), although no crystallographic details 
are available [19]. 

The addition of an excess of 1,2-dimethoxyethane 

(DME) to a toluene suspension of 1 or 2 at room 
temperature gives yellow solutions from which pale 
yellow needles of (r/5-CgH7)MCI3(DME) (3, M = Zr; 4 
M = Hf) are isolated (Eq. (3)). 

[ (q5 _C9H7)ZrC[ 3 In 

(1) 
to|uene or + xs DME 

[(qS-CgH7)HfCI2( ~t-Cl|] 2 

(2) 

C1 ~¢'  ] "~OCH~ 
H3CO ~ " 

M = Zr(3), Hf(4) 

(3) 

The room temperature 1H NMR spectra of 3 and 4 
[20] exhibit typical r/5 patterns for the indenyl ligands 
and the spectra each contain two broadened singlets 
for the exchange DME ligands as was found with 
CpZrCla(DME) [21] and CpHfCI3(DME)[19]. The IH 
NMR spectra do not indicate that the indenyl ligand is 
involved in the exchange of the DME ligands. Al- 
though we have not definitively assigned structures to 3 
and 4, the most likely structure is shown in Eq. (3), 
which is similar to the structures of CpHfCIa(DME) 
[19], and CpTiCla(dmpe) (drape = 1,2-bis(dimethyl- 
phosphino)-ethane) [22]. The reaction of (C9 H 7)TiCl 3 
with excess DME results in reduction of the metal 
center to give a species that contains Ti3+; the IR 
spectrum of the sky blue crystals shows no evidence of 
an indenyl ligand. We have also prepared indenyl-metal 
halides of niobium and tantalum, which are the subject 
of another paper [23]. 

C(7) 

coo) 

C(6) 

c(13) 

Ct(2) 

Hf ( I ) ' ~  ~ H f ( I ) .  

cK2)' 

CI(3) 

Fig. 1. Molecular structure of [(r/5-CgHT)HfCI2(/x-C1)]2, 2. Impor- 
tant bond distances (A) and angles (deg): Hf-C1(2)=2.555(3),  
2.568(3), H f - C I ( 3 ) =  2.374(3), H f - C I ( 4 ) =  2.389(3), H f - C ( 5 ) =  
2.539(11), H f - C ( 1 0 ) =  2.513(11), H f - C ( l l ) =  2.427(11), Hf -C(12 )=  
2.428(10), H f - C ( 1 3 ) =  2.450(11). CI(2)-Hf-CI(2) '  =75.66(9), CI(2)- 
Hf-CI(3) = 84.27(9), CI(2) ' -Hf-CI(3)  = 137.81(9), CI(2) ' -Hf-CI(4)  = 
140.39(9), CI(2)-Hf-CI(4) = 82.60(9). 
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Tables of fractional coordinates and isotropic ther- 
mal parameters, anisotropic thermal parameters, and 
bond distances and angles for 2 are available from the 
Cambridge Crystallographic Data Centre or from 
R.J.M. 
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